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ABSTRACT

If the compound mirror assembly (CMA) in FAME were to be fabricated of a single block of Zero-
dur (instead of silicon carbide with glued-on Zerodur wedges as currently proposed), then, assum-
ing the thermal environment indicated in the Step 1 proposal,  changes in the basic angle due to
temperature gradient fluctuations during the course of one spacecraft spin period are confined to

~35 µas.  This gives rise to the interesting possibility that the proposed laser metrology system,
whose sole functional purpose is to measure short-term changes in the basic angle, may not be
needed if further, possibly inexpensive, attention is given to the thermal environment of the CMA.

A tolerance of 25 µas on changes in the basic angle can be met passively if short-term gradient
changes are on the order ~5 mK/m or less.  

Additionally, there is a potential problem that is independent of the metrology question: warping of
the CMA mirrors alone due to static gradients (as illustrated in the Step 1 proposal) will introduce

wavefront errors of order ~18 nm (~λ/30 at λ = 550 nm).  Similar warping of the primary mirror
will also occur.

1.  Introduction and Summary of
Results.

This memo addresses the temperature gradient
sensitivity of the FAME basic angle.  I adopt a
simple analytical model and assume that the so-
called “compound mirror assembly” (CMA) is
formed from a contiguous block of glass,1 or per-
haps two bonded glass slabs (Figure 1).  I con-
sider for analytical simplicity two cases:  
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1Current design calls for the CMA to consist of silicon carbide with thin Zerodur mirrors attached
with glue.  However, the CTE of SiC is ~200 times that of Zerodur.
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“longitudinal” gradients, where the temperature gradient is in the direction from the CMA to the
primary (parallel to the primary mirror axis of symmetry), and “transverse” gradients, which are
perpendicular to the longitudinal gradients.  Both cases assume, as a worst-case scenario, that the
gradient direction lies in the plane of the optical bench.  

For convenience, I summarize here the calculations that follow in Sections 2 and 3.  I find that
the change in basic angle ψ due to the imposition of a gradient β is

dy = −2a
cos2x cæ + O(cæ

2)

for the longitudinal case and 

dy = 2
h + a tan x

cos2x cΩ + O(cΩ
2)

for the transverse case.  Here, , where α is the CTE of the material, χ is the angle of thec h a $ b
CMA mirrors with respect to the primary mirror symmetry axis, h is the distance along the sym-
metry axis from the CMA support(s) to the CMA mirrors, and 2a is the width of the CMA block
(same as the primary mirror width, currently 60 cm).  (cf. Figures 1, 3, and 6.)  These equations
impose the temperature gradient constraints

bæ [
cos2x
2a a t

and

Basic Angle Temperature Gradient Sensitivity FTM-USNO-95-01

2

5 10 15 20 25 30 35 40 45 50
1

1.5

2

2.5

3

3.5

4

4.5

5

14131211

10

10

9

9

8

8

7

7

6

6

5

5

5

4

4

4

3

3

3

2

2

1

1

β

Figure 2

α (10-8 K-1)

β (mK/m)

δψ (µas)



bΩ [
cos2x

2a
h + a tan x 


t

where τ is the allowed tolerance on δψ.  For h = 0, χ = 45 deg, τ = 25 µas, a = 30 cm, and α =
we have  and .  Changes in the temperature gradients2 $ 108 K−1, bæ [ 5.1 mK/m bΩ [ 5.1 mK/m

within the CMA of this order or larger on timescales of the order of the spacecraft spin period or
less will require direct means of either controlling or measuring the basic angle fluctuations.
(Static gradients2 are of little or no concern in this respect, since the basic angle is a solution
parameter in the data reduction process.)  Figure 2 is a contour plot of the temperature gradient
tolerance in mK/m as a function of δψ in µas and the CTE in units of 10-8 K-1.  The CTE of the
ultra-low expansion glass Zerodur is at most 5x10-8 K-1 in the temperature range 0-50 C.  For
smaller individual pieces (less than ~600 lb.) it is not unreasonable to expect values that are bet-
ter than this.  I use 2x10-8 K-1 in this memo for illustrative purposes.  For comparison, the CTE of
silicon carbide is 4.3x10-6 K-1.

Initial thermal work performed at JPL for the FAME project indicates that the thermal environ-
ment may in fact be stable to better than ~7 mK changes over one spin period.3  If this is the case,
and if further analysis supports the results found here, then perhaps relatively inexpensive further
attention to the thermal environment of the CMA in particular could replace the more costly,
complex, and untested (in space) laser metrology system currently proposed.  

Additionally, it should be pointed out that, since the CMA lies in collimated light beams, the
additional longitudinal shifts from non-ideal placement of the CMA attachment points to the
optical bench have no significant effect for longitudinal gradients.  However, for transverse gra-
dients the deformation of the glass between the supports and the mirrors contributes to the rota-
tion of each mirror in opposite directions.  Therefore, it is important that h be as close as possible
to zero (Figures 3 and 6).

Finally, there is a potential problem concerning beam divergence due to curling of the mirrors
from static gradients.4  Changes in the temperature gradients are likely to be too small to have a
noticeable effect.  Wavefront errors on the order of 18 picometers would result from gradient
changes of 5 mK/m.  However, static thermal gradients, according to a JPL study,5 are likely to
be ~5 K/m.  This would produce a noticeable warpage of the mirrors, with associated wavefront
error of order ~30 nm, or ~λ/18 at λ = 550 nm.  
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5Results are shown in the Step 1 proposal (see Figure 2.2-8 on page 19).

4The effects of gravity unloading and non-uniform CTE should also be looked at in this respect.

3The ~7 mK/m fluctuation shown in the Step 1 proposal is actually a worst-case scenario which
was driven by Earthlight at perigee (J. McGuire, private communication).

2I.e.,  gradients that do not change on timescales smaller than the spacecraft spin period.



2.  Longitudinal Gradient Case.

2.1.  Derivation of the Surface Perturbation.

Consider a cylindrical coordinate system  embed-
z, q, h 


º

ded in a homogeneous medium whose coefficient of ther-
mal expansion is α °K-1.  For a linear temperature gradient
β = dT/dz along the z coordinate axis (Figure 3), the pertur-
bation of the position of a point in the medium is given by

(1)u = a b










1
2


z2 − q2 


z q
0










(R.D. Reasenberg, private communication).  In the uz term,  arises from linear expansion of1
2 z2

the material due to the gradient, while the  component is due to stresses within the material− 1
2 q2

set up by the gradient.  The latter term is the source of the familiar curling effect of an initially
flat disk.  The  term is just the linear expansion of the material, at a height z, in the ρuq = a b z q
direction, due to the cumulative effects of a gradient in the z direction.  Thus, for a plane inclined
to the direction of the gradient by an angle χ, the perturbed position on the initially planar surface
as a function of the unperturbed coordinates is

(2)r ∏ =







z∏

q∏

h∏








= r + u =










s + 1
2 ab

s2 − q2 


q
1 + a b s 


h










where , , and  is the thickness of the material from thex = q cos h y = q sin h s = h + q cos h tan x
CMA support(s) along the gradient (Figure 3).  In the coordinate system shown in Figure 3, if the
attachment points of the CMA to the optical block are located at z=0, then h=0.  More generally,
for attachment at a level z = z0, then h = -z0.

Equation (2) contains a mix of perturbed and unperturbed coordinates and is therefore not useful
in its current form.  We wish to express the perturbed surface in terms of the perturbed coordi-
nates.  From the ρ' component of (2), we have

(3)q ∏ = q 
1 + a b 

h + q cos h tan x





Solving for ρ as a function of ρ', we find

(4)q = 1
2c cos h tan x



 

1 + c h


2
+ 4c q ∏ cos h tan x − 

1 + c h 






where .  The coefficient of thermal expansion is a small quantity, so we can expand on γ:c h a $ b
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(5)q = q ∏ − 
h + q ∏ cos h tan x

 q ∏c + O
c2 



Use (5) for ρ in the z' component of (2), expanding on γ, to get

(6)
s ∏ = s + 1

2

s2 − q2 

 c

= 
h + q ∏ cos h tan x 

 − 


1 + cos2h tan2x 

 q∏ 2 − h2 
 c + O

c2 


Switching back to Cartesian coordinates and dropping the primes, we have the equation for the
perturbed glass thickness:

(7)s = h + x tan x + Ds

where

(8)Ds = − 1
2




x2

cos2x + y2 − h2 


c + O
c2 



Notice that is the position along the mirror surface, which is physically of length x/ cos x
2a/ cos x.

A positive gradient along the z axis produces a warp in both the x and y directions.  Relative to
x=0, the far end of the mirror at x=2a sags along x in the shape of a parabola.  Along the y
dimension (x=0), we also have a downward-sagging parabolic warp.  

2.2.  A Numerical Example.

The warps introduced by a positive temperature gradient of 10 mK/m with  area = 2 $ 10−8K−1

illustrated in Figures 4 and 5.  In Figure 4, the surface perturbation units are nanometers.  The
warp across the short dimension (Figure 5) is shown in picometers.  

2.3.  Resulting Change in the CMA Basic Angle; Constraint on Gradient Magnitude.

The longitudinal excursion of the end of the mirror (x=2a) relative to the beginning (x=0) is

(9)Ds
c, y = h = 0, x = 2 a

 = −2 a2

cos2x c + O
c2 


This corresponds to an angle

(10)
dy
2 = Ds

2 a = −a
cos2x c + O

c2 


The change in the basic angle ψ is approximately twice this amount.  For a tolerance τ such that
, the constraint on the longitudinal temperature gradient is thendy [ t

(11)b [
cos2x
2 a a t + O(t2 )

For the specific case , , , and , we have x = 45 deg t = 25 lrad a = 30 cm a = 2 $ 10−8K−1
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cos2x
2 a a t = 5.1 mK

m

A more careful way to determine the change in angle is to average ∆s across the mirror by inte-
gration.  The slope of the tangent along the x direction is

(12)
ØDs

x, y 


Øx = − x
cos2x c + O

c2 


Hence the change in angle averaged over the 2a by 2b rectangular surface is

(13)tan
dy
2 l

dy
2 = 1

4 a b ¶
0

2a

¶
−b

b

w
x, y 


ØDs

x, y 


Øx dy dx

where w(x,y) is a weighting function.  Evaluating the integral with w(x,y) = 1, we find

(14)
dy
2 = −a

cos2x c + O
c2 



To first order we recover the approximate result, eq. (10).  The mirror width 2b only enters in at
second order and is therefore negligible.  Solving for γ and imposing a basic angle tolerance τ,
we have that the temperature gradient constraint is

(15)b [
cos2x
2 a a t + O(t2 )
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We again recover the first-order approximation, this time in eq. (11).  So, for all practical pur-
poses, the first-order approximation is adequate.

Notice that there is no dependence of δψ on the distance h (cf. Figures 3 and 6).  This is because,
as shown by eq. (8), a longitudinal gradient in a homogeneous medium causes an even longitudi-
nal displacement of a planar surface that is perpendicular to the gradient direction.  The term
involving h is of the form , which is independent of position perpendicular to the zDs = 1

2 h2c
axis.  Hence it is only the material between z=0 and the mirror surface that contributes to a rota-
tion of the basic angle.  This would seem to indicate that placement of the supports between the
CMA and the optical bench is unimportant, at least for longitudinal temperature gradients.  How-
ever, such is not the case for transverse gradients, as we shall see in Section 3.

2.4.  Beam Divergence.

Curvature of the mirrors introduced by the temperature gradient will destroy the collimation of
the input beam upon reflection.  In general, the radius of curvature of a function g(x) is

(16)R = 


dh
dS




−1
=



1 + 


dg
dx




2 



3
2

d2g
dx2

h 2f

where θ is the angle of the tangent line at g(x), Σ is arc length along the curve, and f is the
equivalent focal length.  Using ∆s from eq. (8) in eq. (16) yields 

(17)fa =
− cos2x

2c and fb = − 1
2c
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where fa and fb are the focal lengths along the long (2a) and short (2b) dimensions.  A CTE of
and a temperature gradient β = 5 mK/m produce focal lengths of 2.5 and 5.0a = 2 $ 10−8K−1

gigameters.  At the edge of the beam launched toward the primary (ρ=30 cm), the wavefront
from such a mirror would lag the wavefront center by about 18 pm.  This represents an insignifi-
cant wavefront error.  However, static thermal gradients are on the order 5 K/m.  Such gradients
along the CMA would produce a wavefront error of order ~18 nm, or ~λ/30 at λ = 550 nm.  The
optical design goal is to achieve a wavefront error of 4 nm.  It appears that the likely thermal gra-
dients will cause a wavefront error many times this large.

3.  Transverse Gradient Case.

3.1.  Derivation of the Surface Perturbation.

Recall eq. (1):

(18)u = a b










1
2


z2 − q2 


z q
0










For the transverse case, we rotate the coordinates so that
the z axis is again parallel to the temperature gradient
(Figure 6).  Eq. (18) then applies without change.  The
unperturbed surface is now expressed in the form

(19)s = h + (2 a − z) tan x = q cos h

so that the mirror plane is described by the constraint equation

(20)z = 2 a +
h − q cos h

tan x

Hence the perturbation at the surface is

(21)u = c













1
2


2a +

h − q cos h
tan x




2

− 1
2 q2

2 a q +
h − q cos h

tan x q

0













so that the perturbed surface has the form

(22)r ∏ = r + u =














2a +

h − q cos h
tan x


 + 1

2



2a +

h − q cos h
tan x




2

− q2 

 c

q 
1 + 

2a +
h − q cos h

tan x

 c 



h
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This time the independent variable of interest is z', so we would like to express the radius ρ in
terms of the perturbed “height,” z', and use that in the z' component of (22).  From the ρ' compo-
nent of (22), we have

(23)q ∏ = q + 
2a +

h − q cos h
tan x


 q c

Solving for ρ, we find

(24)q = q ∏ − 

2a +

h − q ∏ cos h
tan x



 q ∏c + O

c2 


Hence, dropping the primed notation, the z component in the perturbed coordinates becomes

(25)z = 
2a +

h − q cos h
tan x


 + 1

2


4a2 − 


1 + cos2h

tan2x


 q2 +

h + 4a tan x
tan2x h 


 c + O

c2 


Invert this to get ρ as a function of z.  We find

(26)q =
h + (2a − z) tan x

cos h + 1
2








2h + (4a − z) tan x
cos h z −


h + (2a − z) tan x 


2

cos3h tan x







c + O
c2 



Convert to Cartesian coordinates to obtain

(27)
x = h + (2a − z) tan x

+ 1
2




2h + (4a − z) tan x 

 z −
x2 + y2

x2

h + (2a − z) tan x 


2

tan x 


$ c + O
c2 



Solve (27) for x.  We find
(28)x = h + (2a − z) tan x + Ds

where ∆s is given below.  Hence the perturbed surface height in the case of a transverse tempera-
ture gradient is

(29)s = h + (2a − z) tan x + Ds
where

(30)
Ds = z h + 1

2 z (4a − z) − h2 − y2  tan x

− 1
2 (2a − z)

2h + (2a − z) tan x 
 tan2x $ c + O

c2 


3.2.  Resulting Change in the CMA Basic Angle; Constraint on Gradient Magnitude.

Since the two wedge mirrors are tilted in opposite directions (Figure 1), a positive temperature
gradient across one mirror is a negative gradient across the other, in terms of the effect on the tilt
angle.  Therefore the change to the basic angle will again be twice the change in tilt of one of the
mirrors:
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(31)
dy
2 =

Ds
z, y 


2a

Now integrate ∆s across the mirror.  The slope of the tangent along the z direction is

(32)
ØDs

z, y 


Øz =
h + (2a − z) tan x

cos2x c + O
c2 



The change in angle, averaged over the 2a by 2b plane, is then

(33)
dy
2 = 1

4 a b ¶
0

2a

¶
−b

b

w
z, y 


ØDs

z, y 


Øz dy dz

Evaluating (33) with w(z,y) = 1, we have simply

(34)
dy
2 =

h + a tan x
cos2x c + O

c2 


Solving for γ, we find that the temperature gradient constraint is

(35)b [
cos2x

2 a 
h + a tan x 


t + O(t2 )

For the case h = 0, , , , and , we have x = 45 deg t = 25 lrad a = 30 cm a = 2 $ 10−8K−1

cos2x
2 a a tan x t = 5.1 mK

m

The tolerance on the transverse temperature gradient due to a constraint on the basic angle devia-
tion is similar to that of the longitudinal gradient, differing by a factor  and, more impor-tan x
tantly, by a dependence on the distance h.  

3.3.  Beam Divergence.

The curvature of the mirrors introduced by a transverse temperature gradient will cause the colli-
mated input beam to diverge.  Using eq. (16) to calculate the radius of curvature for the surface
function given by eq. (30), we find 

(36)fa =
− cos2x
2c tan x and fb = − 1

2c tan x

where fa and fb are again the focal lengths along the long and short dimensions.  Note the similari-
ties to eqs. (17).  A CTE of and a temperature gradient β = 5 mK/m again pro-a = 2 $ 10−8K−1

duce focal lengths of 2.5 and 5.0 gigameters, since I’m using χ = 45 deg.  The conclusions of
section 2.4 also hold for the transverse case.
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